Különbség a paralelogramma és a rombusz között

Tartalomjegyzék:

Különbség a paralelogramma és a rombusz között
Különbség a paralelogramma és a rombusz között

Videó: Különbség a paralelogramma és a rombusz között

Videó: Különbség a paralelogramma és a rombusz között
Videó: A téglalap és a négyzet és tulajdonságai 2024, November
Anonim

Paralelogramma vs rombusz

A paralelogramma és a rombusz négyszögek. Ezeknek az alakoknak a geometriáját az ember évezredek óta ismerte. A témát Eukleidész görög matematikus „Elemek” című könyve kifejezetten tárgyalja.

Paralelogramma

A paralelogramma úgy definiálható, mint egy geometriai alakzat, amelynek négy oldala van, és a szemközti oldalak egymással párhuzamosak. Pontosabban ez egy négyszög, amelynek két pár párhuzamos oldala van. Ez a párhuzamos jelleg számos geometriai jellemzőt ad a paralelogrammáknak.

Kép
Kép
Kép
Kép
Kép
Kép
Kép
Kép

A négyszög paralelogramma, ha a következő geometriai jellemzőket találjuk.

• Két pár szemközti oldal egyenlő hosszúságú. (AB=DC, AD=BC)

• Két ellentétes szögpár egyenlő méretű. ([latex]D\hat{A}B=B\hat{C}D, A\hat{D}C=A\hat{B}C[/latex])

• Ha a szomszédos szögek kiegészítő [latex]D\hat{A}B + A\hat{D}C=A\hat{D}C + B\hat{C}D=B\hat {C}D + A\hat{B}C=A\hat{B}C + D\hat{A}B=180^{circ}=\pi rad[/latex]

• Az egymással szemben lévő oldalpár párhuzamos és egyenlő hosszúságú. (AB=DC és AB∥DC)

• Az átlók felezik egymást (AO=OC, BO=OD)

• Mindegyik átló két egybevágó háromszögre osztja a négyszöget. (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)

Továbbá az oldalak négyzeteinek összege egyenlő az átlók négyzeteinek összegével. Ezt néha paralelogramma törvénynek is nevezik, és széles körben alkalmazzák a fizikában és a mérnöki munkákban. (AB2 + BC2 + CD2 + DA2=AC2 + BD2)

A fenti jellemzők mindegyike használható tulajdonságként, miután megállapítottuk, hogy a négyszög paralelogramma.

A paralelogramma területe az egyik oldal hosszának és a szemközti oldal magasságának szorzatából számítható ki. Ezért a paralelogramma területe

Paralelogramma területe=alap × magasság=AB×h

Kép
Kép
Kép
Kép

A paralelogramma területe független az egyes paralelogramma alakjától. Csak az alap hosszától és a merőleges magasságtól függ.

Ha egy paralelogramma oldalai két vektorral ábrázolhatók, akkor a területet a két szomszédos vektor vektorszorzatának (keresztszorzatának) nagyságával kaphatjuk meg.

Ha az AB és AD old alt a ([latex]\overrightarrow{AB}[/latex]) és ([latex]\overrightarrow{AD}[/latex]) vektorok képviselik, akkor az paralelogramma a [latex]\bal | \overrightarrow{AB}\times \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latex], ahol α a [latex]\overrightarrow{AB}[/latex] és a [latex]\overrightarrow{AD}[/latex] közötti szög.

A paralelogramma néhány speciális tulajdonsága az alábbiakban található;

• Egy paralelogramma területe kétszerese annak a háromszögnek, amelyet bármelyik átlója alkot.

• A paralelogramma területét a felezőponton átmenő bármely egyenes felezi.

• Bármilyen nem degenerált affin transzformáció egy paralelogrammát egy másik paralelogrammává tesz

• Egy paralelogramma forgásszimmetriája 2. rendű

• A paralelogramma bármely belső pontja és az oldalai közötti távolságok összege független a pont helyétől

Rhombus

Azt a négyszöget, amelynek minden oldala egyenlő hosszú, rombusznak nevezzük. Egyenlő oldalú négyszögnek is nevezik. Úgy tekintik, hogy rombusz alakú, hasonló a játékkártyákon lévőhöz.

Kép
Kép
Kép
Kép
Kép
Kép
Kép
Kép

A rombusz a paralelogramma speciális esete is. Paralelogrammának tekinthető, amelynek mind a négy oldala egyenlő. És a paralelogramma tulajdonságain kívül a következő speciális tulajdonságokkal rendelkezik.

• A rombusz átlói derékszögben felezik egymást; az átlók merőlegesek.

• Az átlók felezik a két szemközti belső szöget.

• A szomszédos oldalak közül legalább két egyenlő hosszúságú.

A rombusz területe a paralelogrammával megegyező módszerrel számítható ki.

Mi a különbség a paralelogramma és a rombusz között?

• A paralelogramma és a rombusz négyszögek. A rombusz a paralelogrammák speciális esete.

• Bármelyik területe kiszámítható az alap × magasság képlettel.

• Figyelembe véve az átlókat;

– A paralelogramma átlói felezik egymást, és felezik a paralelogrammát, így két egybevágó háromszöget alkotnak.

– A rombusz átlói derékszögben felezik egymást, és a kialakult háromszögek egyenlő oldalúak.

• Figyelembe véve a belső szögeket;

– A paralelogramma egymással szemben lévő belső szögei egyenlő méretűek. Két szomszédos belső szög kiegészítő.

– A rombusz belső szögeit az átlók kettévágják.

• Figyelembe véve az oldalakat;

– Egy paralelogrammában az oldalak négyzetösszege megegyezik az átló négyzetösszegével (Paralelogramma törvény).

– Mivel egy rombuszban mind a négy oldal egyenlő, az oldal négyzetének négyszerese egyenlő az átló négyzeteinek összegével.

Ajánlott: